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A general and never failing to converge method was suggested for calculating the equilibrium 
composition of real gaseous system whose components react chemically. To express the pressure-
-volume-temperature behaviour the Redl ich-Kwong equation in generalized fo rm was used. 
The application of the method is illustrated on three industrially important examples. 

For calculating complex chemical equilibria in an ideal gaseous state, a number 
of method is available at present based on the knowledge of equilibrium constants 
of single reactions as well as on the minimization of the total free enthalpy of system 
(see for instance1 '2). Considering that most organic reactions in the gas phase take 
place at the temperatures at which, as a rule, all components are in the supercritical 
region, the presumption of ideal behaviour is rather well fulfilled under normal 
or moderate pressures. However, a number of industrially employed reactions is 
known as well which begin to be of interest only under pressures at which single 
components and their mixtures already exhibit a considerable deviations from ideal 
behaviour. It is so e.g. in synthesis of ammonia, methanol, hydroformylation of ole-
fins, synthesis of amines from olefins and ammonia, oxidative cleavage of hydro-
carbons and many others. In such cases it is not possible to neglect the effect of non-
ideal behaviour. As far as the processes are concerned whose course is expressed 
by the only reaction the pressure-volume-temperature behaviour of single com-
ponents and the mixture is either known or it can be estimated3 with a relatively 
good accuracy. The determination of equilibrium composition for a nonideal mixture 
does not make then any difficulties. However, if the reacting system is more complex 
the pressure-volume-temperature relations are not known as a rule nor is it pos-
sible to assume that they could be measured. Considering that it is difficult to estimate 
how great effect the real behaviour of mixture on equilibrium composition will 
have, it seems advantageous to have at our disposal a method in which this effect 
could be expressed. Such a method should be both sufficiently accurate and as far 
as possible general and it should not cause moreover an excessive complication 
ofmathematicrelations.lt is evident that these requirements are satisfied best by such 
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procedures which are based on the knowledge of pressure-volume-temperature 
relations of pure components. 

In the present work the method is described. To determine the equilibrium com-
position the way of determining the minimum of total free enthalpy in terms of the 
Lagrange multipliers, and to describe the nonideal behaviour of mixture the general-
ized Redlich-Kwong equation are chosen. 

Formulation of the Problem 

The determination of chemical equilibrium in a closed system at constant temperature 
and pressure is equivalent to the finding of minimum of the Gibbs function 

N 

G = z "i^i W 
i = 1 

on the set of points (n1, n2, ..., «N) satisfying the conditions 

J ^ n , =b-3, j = 1 , 2 , . . . , M . ( 2 ) 
i = i 

In Eqs (!) and (2) N denotes number of components, M number of elements, n{ 

number of moles of the i-th component, /j,-l chemical potential of the i-th component 
in mixture, ai} constitutional coefficient (number of gram-atoms of the j-th. element 
in the i-th component) and bj total number of gram-atoms of the j-th. element in sys-
tem. The system of equations (2) expresses a mass balance of system. For the chemi-
cal potential n{ holds 

Hi = rf + RTIn fL = n\ + x.P + In (p{) , (3) 

where ju? is chemical potential of pure component at a temperature of system, at a pres-
sure of 1 atm and in an ideal gaseous state, fi is fugacity of the i-th component in mix-
ture, (pL fugacity coefficient of the i-th component in mixture, P total pressure, x{ mole 

N 
fraction (xj = n-Jn, where n = V n j , T is temperature in Kelvin degrees, and R 

i = 1 
gas constant. On substituting Eq. (3) into Eq. (i) we get 

N 

Q = Z "iOi + In (Pi + In Tii/n) , (4) 
i = 1 

where 

Ci = nVRT Q= G/RT. (5), (6) 
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For an ideal mixture of ideal gases is (p{ = 1, for an ideal mixture of real gases ( / j = 
= fit where / f is fugacity of pure component at a temperature and pressure of sys-
tem) is cp{ = (pf, where is fugacity coefficient of pure component at a tempera-
ture and pressure of system. Only for the real mixture of real gases (p{ is also a func-
tion of mixture composition. 

Numerical Solution 

Let us assume first that we solve the problem of an ideal mixture of ideal or real 
gases. Let us denote 

Pi = ci + In <Pi > i = 1,2, (7) 

where p{ is a quantity independent of the mixture composition. The finding of the 
point of minimum of a function 

M N 

K(nu n2, . . n s , Xit..., XM) = Q(nu n2,..., nN) + £ ^(fy - £ a ^ ) (8) 
j=i i=i 

is equivalent to the solution of the problems (4) and (2). The quantities are the 
Lagrange multipliers. By differentiating the function K with respect to ni we obtain 

M 

= exp ( X aikXk - pL), i = 1, 2, . . N . (9) 
k = 1 

A more detailed procedure is given in one of foregoing papers4. The system (2) 
can be rewritten into the form 

N 

- b}t=0, j = 1 , 2 ( 1 0 ) 
i = 1 

N 
X Xj = 1 , t = 1/n . 

i = 1 

On eliminating the unknown t from the first equation (/0) we obtain the system 

Z 9 y * i J = 1, 2, ..., M , (11) 
i = i 

where 

qn= 1 ; ^ = 1 ; < f j = 0 , j = 2, ..., M , (12) 

q.. = ai} - anbilbl , j = 2, ..., M. 
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When substituting Eq. (9) into Eq. (11) we get the system of M equations fo r M un-
known quantities X 2 , i n the fo rm 

M M 

Z e x P ( Z flik4 - pd = di> .7 = 1 , . . . , M . (13) 
i=l k=1 

A numerical solution of the system of equations (13) is not easy. O n using the Newton 
method we meet with difficulty when estimating the first approximation /ij0). With 
respect to relatively large values of |jpj| it is difficult to find so that the values 
x-0 ) calculated f r o m the relation (9) should lie in the interval (0-1) and lest most 
values x( 0 ) should be nearly zero. Such a case must be prevented because as a result 
badly conditioned matrices are obtained resulting in a very unstable numerical 
process. The substance of difficulties during the numerical solution of the system 
(13) consists in the fact that in the exponent on the right-hand side of the relation (9) 
there is a difference of two large numbers. The use of non-derivative methods fails 
as well for it is possible to show that the funct ion 

M N " M 
W(lu 2-2, . . 1 m ) = Z (d} ~ z <Zij exp ( Z « i k 4 - Pi)f (14) 

j= l i = 1 k=1 

has more points in which it acquires its relative minimum. O u r aim is therefore 
the choice of such a numerical method to be able to use the value x[0 ) as the first 
approximat ion instead of This can be reached in the following way: If we take 
logari thm of the left- and right-hand side of Eq. (9) and expand the left-hand side 
of the equation obtained in this way in the Taylor series with two first terms we get 

x,(1> = x[°> + A x ; , (15) 

where 

M 

= x[0 )( — In x j 0 ) + Z aik^k ~ Pi) • (16) 
k = l 

By substituting Eqs (15) and (16) into Eq. (ll) and by solving the resulting linear 
system, we obtain the values Ak, k = 1 , 2 , . . . , M . F r o m the obtained values 
we can determine xj1*, i = 1, 2, . . . , N. We use for it a reducing parameter EG (0-1), 

x!1) =x(°) + g . Axj , (17) 

which is chosen so that x[1 J e ( 0 - l ) for all i = 1, 2 , . . . , N. Considering that x[0 ) e 
e ( 0 - l > then such e > 0 is evident to exist. The above-said numerical procedure 
is repeated till holds 
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M 

S A - Pi < 0 , i = 1-, 2 , . . N , (18) 
k= 1 

i.e. the values of x{ calculated from the relation (9) are smaller than one. The first 
stage of calculation ends here. The values obtained in this wasy are used as the 
first approximation in the Newton method by means of which the system of equations 
(13) is solved. In the second stage of calculating we also use the reducing parameter 
e e (01> so that 

^ A ^ + e A V (19) 

The value of e is chosen so that the nonequalities (18) could hold even for a new 
approximation of values Ak. 

Let us come back to the problems of choosing the first approximation of x(£0). 
We can proceed in several ways (only those which have been verified in practice 
are given): 

1) We now approximate values of equilibrium composition. This case can occur 
e.g. if we calculate equilibrium composition of the same mixture at the same tempera-
ture but at another pressure. 

2) We choose x[0) = 1/iV. In this case we do not use any information on the system. 
3) From Eq. (2) it is evident that 

^ ^ q{ = m i n ( b j a ^ ) , i = 1, 2, ..., N . 
j,ai j*0 

N 

Then we can choose x-0) = qj £ qt. This approximation does not use thermodynamic 
r = l 

properties of the given mixture (e.g. it is independent of temperature and pressure). 
It follows from relation (4) that the lower the value of px is the more hopeful the oc-
currence of the i-th component in equilibrium is. As far as all pt are negative (the 
most often occurring case) then it is possible to choose 

4 = S i H / I < Z r H , i = l , 2 , . . . , N . (20) 
r = 1 

In our practice we have not found a case that the numerical process proposed would 
not converge even if the values x\0) are chosen according to any of three ways given. 

Now there is a problem left of calculating the equilibrium composition of real 
mixture of real gases ((p{ is a function of composition). In this case we proceed so that 
the given system is solved as an ideal mixture of real gases first. The calculated 
composition is then used to determine p t and the calculation is repeated. Usually 
additional two or three iteration cycles are sufficient. 
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Redlich-Kwong Equation and Reasons of Its Choice 

To determine the fugacity coefficient the Redlich-Kwong equation in generalized 
form was chosen. This choice is to be supported by several reasons: 

1) The accuracy of the equilibrium composition determination is conditioned 
by the accuracy of thermochemical quantities. It is evident from Eqs (4), (5), and 
(7) it is of no use to require higher accuracy in the determination of the logarithm 
of fugacity coefficient than the accuracy of the n ^ R T determination from experimen-
tal data is. It follows from Eqs (7) and (9) that 

8xjxl » 6WIRT) + <5(ln cp,) , i = 1, 2 , . . . , N, (21) 

where <5 is a symbol for absolute error. A considerable dependence of the accuracy 
in the equilibrium composition determination on the accuracy of the determination 
of values $\RT can be seen from Eq. (21). If a maximum one-percent error in the 
equilibrium composition determination is to be warranted an absolute error smaller 
than 0-01 must be secured in the values of n°jRT_and In cp{. Such an accuracy is 
apparently worse reached in the relatively large value of $ \ R T than in the value 
of In (Pi. 

2) It is more reasonable to choose a simpler equation. A decrease in the accuracy 
of calculated fugacity coefficients is negligible. Besides, with the aim of the descrip-
tion of chemical equilibrium in a wide range of temperatures and pressures, the extra-
polation outside the range of validity may be connected with a greater risk in case 
of multiconstant equations than with simple relations. 

3) The Redlich-Kwong equation appears to be one of the best and most often 
used one among equations of state with low number of constants. 

4) Its generalized form comply well with the intended aim to express nonideal 
behaviour from critical data which are easily available for a wide group of substances. 

The generalized form of the equation can be written in the form 

P = RTj(v - b) - aj[v(v + b) , (22) 

where a = 0-427S(RTc)2 ^/TjP,, b = 0-08671?rc/Pc. For the fugacity coefficient 
of pure component holds3 

In tf = In [*77(P(t> - 6,))] + b^v - b,) - a^Kv + b-) + 

+ brllh((v + bl)lv)}l(RT1's), (23) 

where ait bj are constants of the Redlich-Kwong equation for the i-th component 
and v is molar volume of the i-th component at the temperature and pressure of sys-
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tem. If we use for calculating the fugacity coefficient of the component i in mixture 
the rules in the form 

N N 
a = ( Z * i V f l i ) 2 > b=YJxibi, i = l i = l 

(24) 

then it can be shown that the relation holds3: 

In (p, = In (RTl(P(v - b)) + b^v - b) - + b)) + 

+ [(2 V(«.A0 " *«/*)/*] • ((* + b)lv)}l(RT«) . (25) 

where a, b are constants of mixture determined 
by Eqs (24) and v is molar volume of mixture 
at the temperature and pressure of system. 

FIG. 1 
Effect of Nonideal Behaviour (r-r Type) on Equi-
librium Number of COa mol at Various Temperatures ^ 1000 

TABLE I 

Dependence of Diethylamine Formation on Pressure 

T, K Type 

600 i-i 
600 i-r 
600 r-r 
700 i-i 
700 i-r 
700 r-r 

P, atm 

1 2 5 10 20 50 100 200 500 1000 

0-1257 0-1861 0-2263 0-2391 0-2453 0-2489 0-2501 0-2507 0-2510 0-2511 
0-1257 0-1863 0-2263 0-2389 0-2444 0-2445 0-2479 0-2560 0-2580 0-2528 
0-1257 0-1863 0-2266 0-2397 0-2464 0-2514 0-2550 0-2584 0-2582 0-2540 
0-0026 0-0097 0-0471 0 1115 0-1800 0-2323 0-2500 0-2586 0-2637 0-2653 
0-0026 0-0098 0-0476 0-1128 0-1819 0-2335 0-2504 0-2615 0-2670 0-2644 

r-r 0 0026 0-0098 0-0473 0 1121 0-1815 0-2352 0-2540 0-2637 0-2674 0-2649 
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The use of the method. Verification of the method was carried out by computing the equilibrium 
composition of some simple systems (thermochemical data were in all cases taken f rom the mono-
graph of Stull and coworkers5). 

1) Water-gas conversion: This simple reaction (CO + H 2 0 = C 0 2 + H 2 ) is very suitable 
to appreciate the effect of real behaviour because its course is not connected with a change 
in volume. The change of equilibrium composition with pressure is therefore solely a consequence 
of the effect of nonideal behaviour. The results of computation for the initial molar ratio CO : 
: H 2 0 = 1 : 1 and the temperature range of 300—1000 K are represented in Fig. 1 as the number 
of moles of C 0 2 formed, as a function of pressure. 

2) Ammonia addition on ethylene: The reactions were considered resulting in ethyl-, diethyl-, 
and triethylamine formation: 

C 2 H 4 + N H 3 = C 2 H 5 N H 2 , (.A) 

C 2 H 4 + C 2 H 5 N H 2 = ( C 2 H 5 ) 2 N H , (20 

C 2 H 4 + ( C 2 H 5 ) 2 N H = ( C 2 H 5 ) 3 N . (C) 

For the ratio of initial components 1 : 1 , the dependence of equilibrium number of moles of di-
ethylamine formed at a temperature of 600 and 700 K on pressure is presented in Table I. Three 
cases are always considered, viz. an ideal mixture of ideal gases (denoted in the Table as i-i), 
an ideal mixture of real gases (i-r), and a real mixture of real gases (r-r). 

3) The formation of ethanethiol and diethylsulphide f rom ethanol, hydrogen, and gaseous 
sulphur: Besides the starting components ethane thiol, diethyl sulphide, hydrogen sulphide, 
diethyl ether, acetaldehyde, ethylene, ethane, and water were considered in the reaction mixture 
The results of computation for the equimolar composition of initial mixture ( C 2 H 5 O H : H 2 : 
: S 2 (g) = 1 : 1 : 1/2) under a pressure of 80 atm are presented in Table II as the number of moles 
of single components under corresponding temperatures as well for all three types of mixtures 
(i-i, i-r, r-r). 
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